Focus on Visual Basic for Applications and Word

Objective

· This workshop is designed to focus more on Visual Basic for Applications and Word

· Covers the common Object, Methods, and Properties for Word

· Sample code is included.

What can be done with VBA?

· Pull data from database automatically

· Retrieve information automatically upon opening Word

· Create custom data entry screen

Object Hierarchy (Commonly used Objects and Properties)

Application – Represents the entire Microsoft Word application. The Application object contains:

· Application-wide settings and options (for example, many of the options in the Options dialog box found in the Tools menu).

· Methods that return top-level objects, such as ActiveDocument

Documents(Document Name or Number) - A collection of all the Document objects that are currently open in Word.

Range(Begin Character, End Character) - Represents a contiguous area in a document. Each Range object is defined by a starting and ending character position.

Paragraph(Paragraph Number) - A collection of Paragraph objects in a selection, range, or document.

Words(The actual word, or position of word) - A collection of words in a selection, range, or document. Each item in the Words collection is a Range object that represents one word

MailMerge - Represents the mail merge functionality in Word.

Common Shortcut Objects

ActiveDocuments – Returns a Document object for the current object being worked on

Working with Word:

Common Properties and/or Methods

Call Application.Documents(“Document1”).Protect(Type, NoReset, Password)

· Type - Required Long. The protection type for the specified document. Can be one of the following WdProtectionType constants: wdAllowOnlyComments, wdAllowOnlyFormFields, wdAllowOnlyRevisions, or wdNoProtection.

· NoReset - Optional Variant. Set to “False” to reset form fields to their default values. Set to “True” to retain the current form field values if the specified document is protected. If Type isn't wdAllowOnlyFormFields, the NoReset argument is ignored.

Call Application.Documents.Open(“FormLetter1.doc”)

· Opens Document

Call Application.Documents.Close(SaveChanges as True/False)

· Closes document with the option to saving

Call Application.Documents(“MyLetter”).PrintOut

· Prints the document to the printer.

Call Application.Documents(“MyLetter”).Save

· Saves the Document

ActiveDocument.Paragraph(3).Words(“Natec Systems”).Bold = True

· Causes the Words “Natec Systems” to be bold

ActiveDocument.Paragraph(3).Words(“Natec Systems”).Font.Size = 16

· Causes the Words “Natec Systems” to be displayed in the font size of 16

Working with Word:

Code for controlling Mail Merge

Function InsertNewField(FieldName As String, _

DataSourceName As String) As Boolean

 ' This routine is used to add a New Field to the data Source

 ' This assumes the DataSource has been opened. If it has not

 ' been opened in Word, then the program causes an error

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 myTable.Range.Cells.Add BeforeCell:=myTable.Cell(1, 1)

 ' Assignes the cell the field name

 myTable.Cell(1, 1).Range.Text = FieldName

End Function

Private Sub UpdateMergeData(RecordPos As Integer, Data As String, _

FieldName As String, _

DataSourceName As String)

 Dim myTable As Table, CellPos As Integer, ColumnPos As Integer

 ' adds data into a specific field

 ' this will not save the file, just update the active copy

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 For CellPos = 1 To myTable.Columns.Count

 ' finds the column that holds this field name. The program

 ' must strip 2 characters off the end.

 CellValue = myTable.Cell(1, CellPos).Range.Text

 CellValue = Mid(CellValue, 1, Len(CellValue) - 2)

 If CellValue = FieldName Then

 ColumnPos = CellPos

 Exit For

 End If

 Next CellPos

 ' if there was no Column Pos set, then exit program

 If IsEmpty(ColumnPos) Then Exit Sub

 ' if the row does not exist, then create a new row

 If RecordPos > myTable.Range.Rows.Count Or RecordPos = 0 Or _

RecordPos = -1 Then

 myTable.Range.Rows.Add

 RecordPos = myTable.Range.Rows.Count

 End If

 ' updates data

 myTable.Cell(RecordPos, ColumnPos).Range.Text = Data

End Sub

Working with Word:

Code for controlling Mail Merge – continued…

Private Sub DestoryMergeHeader(DataSourceName As String)

 ' clears the header information

 ' clears the data first.

 ClearMergeData DataSourceName

 'destroys the header

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 myTable.Rows(1).Delete

 ' Since there must be a table existing in order for these

 ' programs to work, create a temp table

 Set myRange = Application.Documents(DataSourceName).Range(0, 0)

 Application.Documents(DataSourceName).Tables.Add Range:=myRange, _

NumRows:=1, NumColumns:=1

End Sub

Private Sub ClearMergeData(DataSourceName As String)

 ' Clears all the data out of the datasource file

 ' this will not save the file, just clear the active copy

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 ' deletes information until there is only the heading line left

 While Not (myTable.Rows.Count = 1)

 myTable.Rows(myTable.Rows.Count).Delete

 Wend

End Sub

Working with Word:

Code for controlling Mail Merge – continued…

Private Sub CreateTempDataSource(DataSourceName As String, _

DataSourcePath As String)

 ' Creates the temp DataSource

 On Error Resume Next

 ' Check to see if the temp file exists. If it does, then

 ' open it. It doesn't, then create the file

 Open DataSourcePath & DataSourceName For Input As #1

 If Err Then

 ' Sets the data source to pull from

 ActiveDocument.MailMerge.CreateDataSource Name:= _

 DataSourcePath & DataSourceName, HeaderRecord:="Temp", _

 LinkToSource:=True

 End If

 ' file not already open.. Open

 Documents.Open FileName:=DataSourceName

 ' clears the file to start from scratch

 DestoryMergeHeader DataSourceName

End Sub

Private Sub DestroyTempDataSource(DataSourceName As String)

 ' Destroys the Temp Data Source

 ' close, without saving

 Application.Documents(DataSourceName).Close SaveChanges:=False

End Sub

Working with Word:

Mail Merging Multi-value Information – Using Winlink and ViaObjects

Sub Macro1()

 Dim wlBase As New WinLink.BaseObject

 Dim wlLink As WinLink.Link

 Dim wlItem As WinLink.DelimitedString

 Dim wlCustFile As WinLink.RemoteFile

 ' This macro merges the information from a Customer file to the

 ' Temp Data source so it can be merged into the form letter

 TempDataFileName = "TempMailData.Doc"

 TempDataFilePath = "C:\My Documents\"

 ' creates the link to the WinLink Host and opens Order File

 Set wlLink = wlBase.Links.OpenLink("Default")

 Set wlCustFile = wlLink.RemoteFiles.OpenFile("CUSTOMERS")

 ' Sets the data source to pull from

 Call CreateTempDataSource(TempDataFileName, TempDataFilePath)

 ' adds Fields

 If InsertNewField("FirstName", TempDataFileName) Then Exit Sub

 If InsertNewField("LastName", TempDataFileName) Then Exit Sub

 If InsertNewField("Address", TempDataFileName) Then Exit Sub

 If InsertNewField("City", TempDataFileName) Then Exit Sub

 If InsertNewField("State", TempDataFileName) Then Exit Sub

 If InsertNewField("Zip", TempDataFileName) Then Exit Sub

 ' Reads the Data and adds data

 Set wlItem = wlCustFile.read("5912")

 RowPos = -1

 UpdateMergeData RowPos, wlItem.Extract(1).Text, "FirstName", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(2).Text, "LastName", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(3).Text, "Address", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(4).Text, "City", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(5).Text, "State", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(6).Text, "Zip", _

TempDataFileName

 ' closes and destroys link

 wlLink.CloseAllFiles ' verify that all files are closed

 wlLink.CloseLink ' closes link

 ' destroys base object.

 Set wlBase = Nothing

End Sub

About Speaker

Nathan Rector is the owner of Natec Systems. Natec Systems has been providing solutions to the Multi-Value market for 8 years. Nathan is a feature author for International Spectrum’s “Tech Tips”.

Natec Systems has worked with integrating Multi-Value data into Windows and the Internet. They work with Visual Basic, ODBC, as well as traditional MultiValue BASIC.

On-site training classes are available for:

Visual Basic

Visual Basic for Applications

Winlink 32

D3/Objects

WebWizard

For more information on Natec Systems or custom applications, contact:

Natec Systems

1685 Sutter Road

McKinleyville, Ca 95519

Phone: 707-443-6716
Fax: 707-839-4315

Email: nater@northcoast.com
http://www.northcoast.com/~nater
VBA105 – Workshop
Page 1 of 7
Natec Systems

