ODBC in the D3 Environment

Objective

· Similarities and Differences between Multi-value data and ODBC

· How to retrieve multi-value data with ODBC

· Show some code examples for ODBC

What is ODBC?

· ODBC = (O)pen (D)ata(B)ase (C)onnectivity

· ODBC is a API (Application Programming Interface)

· Allows access to your database from any program

· Do not need a proprietary programming language

· Was developed by Microsoft.

· Can be found in most programming languages (Visual Basic, C++, Java, PowerBuilder, Delphi)

· Based on SQL (Structured Query Language)

Why use ODBC?

· You don’t have to program using a proprietary programming language

· Allows you to connect to different types of databases without changing your programs

· The server DBMS manages the I/O.

· You don’t need to know how the information is stored on the DBMS

Draw-backs to ODBC

· Not designed to work with multi-value files

· Uses a flat file format, similar to a spread sheet

· Common sluggish responsiveness when accessing data

· Can be hard to work with when working with complex files

Understand Terms used in ODBC

ODBC

Multi-value
Database
=
Account

Tables

=
Files

Row

=
Record

Column

=
Field or Attribute

Recordset
=
All or partial Record

View

=
All or partial Record but read-only

What does a ODBC Table look like?

SQL file Tables look like a spreadsheet. They are made up of Rows and Columns:

	Rec#
	FirstName
	LastName

	1
	Nathan
	Rector

	2
	Tracey
	Passig

	3
	Joe
	Johnson

To access a multi-value database, your Multi-value database must be mapped into two-dimensional tables. All of the Multi-Value Operating systems and Third Party suppliers of ODBC drivers, provide tools for mapping your existing database to work in the SQL format.

A file with multi-value information in it would look like the following SQL Table:

Multi-value Order File

Rec#
Cust#
Part#

Qty
Date Ship

1
5912
P578-3d5
1
01/01/98

3 01/20/98

SQL Order Header Table

	Rec#
	Cust#
	Part#

	1
	5912
	P578-3d5

SQL Order Detail Table

	Rec#
	Part#
	Qty
	DateShip

	1
	P578-3d5
	1
	01/01/98

	1
	P578-3d5
	3
	01/20/98

ODBC Server - Unix

ODBC can be started by using the TCL command ODBC in DM, or by typing the following at TCL in DM:

!odbcsvr –d –f –b 1603 1> /dev/null 2> /dev/null &

ODBC Server - NT

The ODBC server is setup automatically by the D3/NT setup. The ODBC server will be added as a Windows service and can be controlled from the NT Services Control Panel.

ODBC Client

[image: image1.png]
When creating an ODBC connection to D3/Linux or ProPlus, the Host is the name of Linux or ProPlus machine, and Virtual Machine is the name of VME (normally pick0). If you do not have a DNS (domain Name server) server on your network, then the IP Address for Host will work as well.

SQL-CREATE-TABLE and SQL-DISPLAY TABLE

Map the entire D3 dictionary into a SQL table.

SQL-CREATE-TABLE CUST

At times you may not want to map your complete D3 dictionary into a SQL table. If you only map the information that is needed outside of D3, then you are able to control your data better and keep users from changing information they shouldn't be changing. You create just that much more security.

To do this, you use the 'c' option along with the list of fields you want to be mapped into an SQL table.

SQL-CREATE-TABLE CUST NAME ADDRES (C

SQL-CREATE-TABLE maps multi-value fields into the needed nested files without extra help as along as these fields are controlling/dependent fields. The problem is that not all the multi-value fields are controlling/dependent fields. For example, a customer file may have a multi-value field for the phone number that isn't a controlling field, nor is it a dependent field.

Files that have these types of fields require the SQL mapping to be done manually. You still use the SQL-CREATE-TABLE to create the mapping, but you have to list the fields and how they are associated in command line.

If the first attribute in a multi-value list has unique values, then place all the fields that are dependent on each other between []. If the first field does not have unique values, then place the list of fields that are dependent on each other between {}.

SQL-CREATE-TABLE CUST CUST.NO NAME ADDRESS [PHONE] [SIGNER_LIST {BEG_DATE END_DATE}]

If you want to view how a current table is created then use the command SQL-DISPLAY-TABLE.

:SQL-DISPLAY-TABLE CONTACTS

===

TABLE NAME: CONTACTS

PRIMARY KEY: REC_NO

MACRO: REC_NO COMPANY_NAME

ATTRIBUTE COLUMN-ID DATA-TYPE COL# SIZE CORRELATIVE

--------- --------- --------- ---- ---- -----------

REC.NO REC_NO VARCHAR 0 6

COMPANY.NAME COMPANY_NAME VARCHAR 1 30

==

TABLE NAME: CONTACTS_PHONE

PRIMARY KEY: REC_NO,PHONE

NESTED KEY: REC_NO

REFERENCES: CONTACTS

MACRO: PHONE REC_NO

ATTRIBUTE COLUMN-ID DATA-TYPE COL# SIZE CORRELATIVE

--------- --------- --------- ---- ---- -----------

PHONE PHONE VARCHAR 9 13

REC_NO REC_NO VARCHAR 0 6

Connecting to an ODBC database

To connect to an ODBC database, the appropriate client-side driver must be loaded on your client computer. If you are working with Windows 95, then you can find the ODBC Source Manager in the Windows Control Panel.

Once the client computer understands how to find the source database, you are able to connect to the database with ODBC. Example in Visual Basic:

Dim DBMS as Database

Set DBMS = Workspace(0).OpenDatabase(“”,False,False, _

“ODBC;DNS=MyDBMS;uid=nate;pwd=default”)

Accessing the ODBC information

When you wish to access ODBC information, you will need to select it from the ODBC database. If you want to view and update a record in a file, then you would first select the record and place it into a record set. Here is an example in Visual Basic:

Dim rsItem as RecordSet

SQLSelect = “SELECT * FROM customer WHERE rec_no = ‘1’”

Set rsItem = DBMS.OpenRecordset(SQLSelect, _

dbOpenDynaset)

txtName.text = rsItem.Fields(“FirstName”).Value

txtZip.text = rsItem.Fields(“CompanyName”).Value

Types of Record Sets

· Table

Updateable. Works best with small select lists. Fastest of the three. Allows the use of indices for sorting data.

· DynaSet

Updateable. Works best with large select lists. Most flexible. Unable to use indices for sorting data.

· SnapShot

 Display Only. Works best for display small list. Faster than DynaSet. Unable to use indices for sorting data.

What does ODBC SELECT statement work?

Display all fields

Multi-value Syntax:

List Customer

ODBC Syntax:

SELECT * FROM Customer;

Display specific fields

Multi-value Syntax:

List Customer FirstName LastName Address City State Zip

ODBC Syntax:

SELECT FirstName, LastName, Address, City, State Zip

FROM Customer;

Select a specific Record
Multi-value Syntax:

List Customer with Zip = “95519”

ODBC Syntax:

SELECT * FROM Customer WHERE Zip = ‘95519’;

Multi-value Syntax:

List Customer with Zip = “955]”

ODBC Syntax:

SELECT * FROM Customer WHERE Zip LIKE ‘955%’;

Multi-value Syntax:

List Customer “1”

ODBC Syntax:

SELECT * FROM Customer WHERE CustId = ‘1’;

Multi-value Syntax:

List Customer with Zip >= “95519” and with Zip <= “95521”

ODBC Syntax:

SELECT * FROM Customer WHERE Zip >= ‘95519’

 AND Zip <= ‘95521’;

Examples of ODBC code in VB

Dim DBMS as Database

Dim rsItem as RecordSet

Sub ReadCustomer(CustId as string)

Dim sSQLSelect as String

Set DBMS = Workspace(0).OpenDatabase(“”,False,False,_

“ODBC:DNS=MyDBMS;uid=nate;pwd=default”)

sSQLSelect = “SELECT * FROM customer WHERE”

sSQLSelect = sSQLSelect & “ rec_no = ‘”

sSQLSelect = sSQLSelect & CustId & “’”

Set rsItem = DBMS.OpenRecordset(sSQLSelect, dbOpenDynaset)

txtName.text = rsItem.Fields(“FirstName”).Value

txtZip.text = rsItem.Fields(“CompanyName”).Value

End Sub

Sub WriteCustomer()

‘ enable editing

rsItem.Edit

‘ Updates fields

rsItem.Fields(“FirstName”).Value = txtName.text

rsItem.Fields(“Zip”).Value = txtZip.text

‘ writes to file

rsItem.Update

‘ Closes recordset and Database

rsItem.Close

DBMS.Close

EndSub

About Speaker

Nathan Rector is the owner of Natec Systems. Natec Systems has been providing solutions to the Multi-Value market for 8 years. Nathan is a feature author for International Spectrum’s “Tech Tips”.

Natec Systems has worked with integrating Multi-Value data into Windows and the Internet. They work with Visual Basic, ODBC, as well as traditional MultiValue BASIC.

On-site training classes are available for:

Visual Basic

Visual Basic for Applications

Winlink 32

D3/Objects

WebWizard

For more information on Natec Systems or custom applications, contact:

Natec Systems

1685 Sutter Road

McKinleyville, Ca 95519

Phone: 707-443-6716
Fax: 707-839-4315

Email: nater@northcoast.com
http://www.northcoast.com/~nater
� EMBED PBrush ���

ODBC105 – Workshop
Page 8 of 8
Nathan Rector - Natec Systems

[image: image2.png]_979155163

