ntsSync Concepts

The ntsSync Manager program allows a developer to create one DLL that will sync PDB data on both a Palm and a Pocket PC. It will also allow the developer to create PDB files on the PC for other specific types of devices.

All Application conduits will have a Unique Application Id, or AppId, that ntsSync will use to help store and handle information regarding the DLL supplied. Each DLL must implement ISyncNotify, and register the full windows ClassId with ntsSync.

To register with a conduit with ntsSync, just add the AppId to the ntsSync.ini file (See .INI file), or use Tools | Edit ntsSync.ini. Once this is done, then the developer can start the ntsSync Manager and Install the conduit into HotSync and/or ActiveSync. The Developer can also create PDB files from within this ntsSync Manager.

[image: image1.png]Desciption
InvCount__ | Natec Systems Invertory Count

Right-Click on the Registered Conduit to configure or Install/Uninstall information about this Application Conduit:

[image: image2.png]Description

‘Condut Instal{Uninstall >
Appication Instal »

symc 3

You can also control the ntsSync Manager, like Install/Uninstall, from the command line (See Command Line Switches).

ntsSync Register Conduit

To register a conduit, you will need to do 2 things. Add an entry into ntsSync.ini, and place your conduit code in the ntsSync Folder, under a subfolder with the same name as the AppId:

[image: image3.png]Folders

= ntssyme

/2 nvount
L nethtesting
21 Morton antivirus
{1 online Services

x

|5 cetnstallini

R imcantico

18 invcourtog

) inventoryCount ARM.CAB

£ InventoryCount_Intermec. ARM, CAB
ivertoryCount el

ntsSync .INI File

[ApplicaitonId]

ClassId
=Dll.Class

CEPath
= Path on the CE device that files can be found in. This is used when the database type is ActiveSync. It allows the users to not have to supply a full path to save the files in.

PCPath
= Path on the PC where file can be found. This is used when the database type is PC. They allows the users to not have to supply a full path name to save the files in

ShowLog
= 1/0 - Show a log windows during the Sync process. This will show any messages that are sent to the log by the Conduit

PCInstall
= The PPC Cab files to install for this Application.

PalmInstall
= The PRC file for the Palm install

Example:

[InvCount]

ClassId=InvConduit.CSyncNotify

CEPath=\Program Files\InventoryCount\

PPCInstall=InventoryCount_Intermec.ARM.CAB

PalmInstall=InventoryCount-Install.prc

ntsSync Command Line Switches

-AppId {Registered Application Name}

-Database {type of database the program is create data for}

0- Palm HotSync

1- Palm VFS (Saves PDB files to PC)

2- Pocket PC (Saves PDB files to PC)

3- Symbian (Saves PDB files to PC)

4- Windows PC

5- ActiveSync

-Install

-Uninstall

ntsSync Interface Definition

Interfaces

This section lists the Classes exposed by ntsSync. For each class, the methods and events are listed.

cConduitList

This class returns information about all the conduits that are registered with the ntsSync Manager.

Methods
Property Get FileName() As String

Full Path location for the ntsSync .INI
Function FindAppId(ByVal sAppId As String) As Integer

Returns the Index value that this AppId is located in.
Function FindAppIdFromCreatorId(ByVal sCreatorId As String) As Integer

Returns the Index value of the Application that uses this CreatorId.
Property Get Count() As Integer

Number of conduits registered with ntsSync
Property Get AppId(ByVal Index As Integer) As String

Application Id is similar to the the Palm Creator Id. It is Uniqnue Name for your conduit dll that ntsSync will use as a key to pull information from.
Property Get ApplicationName(ByVal Index As Integer) As String

Application Name is a description of your Conduit for the end users.
Property Get Author(ByVal Index As Integer) As String

Author is the company or person that created the Conduit.
Property Get ClassId(ByVal Index As Integer) As String

This is the full windows class name that has implemented the ISyncNotify
Property Get CreatorId(ByVal Index As Integer) As String

Palm CreatorId. All Conduits must have a creator id supplied in order to create pdb files correctly.
Property Get Icon(ByVal Index As Integer) As String

Path Name to the Icon File to display on the setup screen and the status screen.
Property Get PPCInstall(ByVal Index As Integer) As String

The name of the PocketPC CAB files found in the path AppId path.
Property Get PalmInstall(ByVal Index As Integer) As String

The name of the install PRC file found in the path AppId path.
Property Get CePath(ByVal Index As Integer) As String

Path on the CE device that files can be found in. This is used when syncing through ActiveSync. It allows the developers to not have to supply a full path to save the files in.
Property Get PCPath(ByVal Index As Integer) As String

Path on the PC where the PDB will be placed. This is only valid if the ntsSync program is created PDB Fiels to the PC.
Property Get ShowLogMsg(ByVal Index As Integer) As Boolean

Show a run-time log window while the conduit runs. This window will display any message sent to the UpdateLog method.

Events

None

CDevice

This Class contains information about the device and how ntsSync Manager is creating the information.

Methods
Property Get DeviceName() As String

Read-Only. The name given to this device.
Property Get DeviceType() As eDeviceType

Type of syncing device we are working with.
Property Get DeviceDateTime() As Date

Read-Only. Returns the Current Date/Time on the device.

Property Get SyncDateTime() As Date

Read-Only. Returns the Date/Time that this conduit was last run for this Device.

Function GetSettings(Section,Key,Default) as String

Returns a value saved specifically for this device. This allows you to keep track of information on a Device by Device basis.

Sub SaveSettings(Section,Key,Value)

Saves a specific value for this device. This allows you to keep track of information on a Device by Device basis.

Events

None

CConduitInfo

This Class is used to access information about the conduit you are currently running. This includes settings saved at the conduit level and dates when the conduit was last run.

Methods

Property Get AppId as String

Read-Only. This is the Application ID assigned to this Conduit.

Property Get AppFolder as String

Read-Only. This is the full path name for the folder that the ntsSync Application information is saved in.

Property Get SyncDateTime as Date

Read-Only. This is the Date/Time that the conduit was last run. This date is updated every time the conduit is run regardless of what device was used during syncing. If you want to know when the conduit was last run for this specific device, then use the information in the CDevice Class.

Function GetSettings(Section,Key,Default) as String

Allows you to retrieve information stored for general Application information. This information is accessible and shared across all devices.

Sub SaveSettings(Section,Key,Value)

Allows you to save information for general Application information. This information is accessible and shared across all devices.

Events:

None

ISyncNotify

This Class is used to Implement a common interface that the ntsSync Manager will use to process the conduit information.

Methods
Sub BeginSynchronize(ByVal oSync As oSyncInfo)

This methods is called by the ntSync to start the Sync process. The oSync Object is the root object that is used to interact with the device and it’s files.
Function GetConduitInfo(ByVal infoType As eConduitType) As String

Returns information about this conduit.

ctVersion - Returns the Version Number of for this application

ctCreatorID - This is a 4 char creator id to be used to create the PDB files.

ctAuthor - This is the name of the company or person that created this conduit

ctApplicationName - Returns the name of this application

ctAppPath - Returns the path to the application files

ctIcon - Returns the Path name for the Icon to display.

{path}\{Icon Name}

Or the full path to the DLL or EXE that contains the icon.

RES:{Path}\{Dll Name}

Sub ConfigureConduit

This Method is called when the ntsSync manager wants to display the configuration screen.
Sub SynchronizeClose

The ntsSync Manager is about to destory the object.

Example
Option Explicit

Implements ISyncNotify

' --

' SyncNotify Methods

' --

Private Sub ISyncNotify_BeginSynchronize(oSync As ntsSync.oSyncInfo)

 ' Begin processing the Sync information

 oSync.UpdateLog App.ProductName

End Sub

Private Sub ISyncNotify_ConfigureConduit()

 ' Configure information.

End Sub

Private Function ISyncNotify_GetConduitInfo(ByVal InfoType As ntsSync.eConduitType) As String

 ' Get information

 Select Case InfoType

 Case ctIcon

 ISyncNotify_GetConduitInfo = “res:” & App.Path &”\”& App.ExeName

 Case ctVersion

 ISyncNotify_GetConduitInfo = App.Major & "." & App.Minor & " Build " & App.Revision

 Case ctCreatorID

 ISyncNotify_GetConduitInfo = "ERGI"

 Case ctAuthor

 ISyncNotify_GetConduitInfo = App.CompanyName

 Case ctAppPath

 ISyncNotify_GetConduitInfo = App.Path

 Case ctApplicationName

 ISyncNotify_GetConduitInfo = App.Title

 Case Else

 ISyncNotify_GetConduitInfo = ""

 End Select

End Function

Private Sub ISyncNotify_SynchronizeClose()

 ' Do Nothing

End Sub
oSyncInfo

Methods
Property Get FileSystem() As _PDBFileSystem

Returns the a FileSystem Object for the Device you are syncing with.

Property Get ConduitInfo as _CconduitInfo

Returns a Conduit Info object that you can use to access or store information for this conduit.
Property Get Device() As _CDevice

Returns an object describing the device you are syncing with.
Property Get CancelSync() As Boolean

This properies allows you to check to see if the user has pressed the Cancel button.
Sub UpdateStatusMain(ByVal Value As String)

Update the main label on the status screen.
Sub UpdateStatusDetail(ByVal Value As String)

Updates the second label on the status screen.
Sub UpdateStatusMaxBar(ByVal Value As Long)

Set the max value of the status screen's progress bar.
Sub UpdateStatusIncrementBar(ByVal Value As Long)

Increment the current value of the status progressbar by this value.
Sub UpdateStatusBarValue(ByVal Value As Long)

Update the current value of the Status Progress Bar.
Sub UpdateLog(ByVal Value As String)

Add information to the Log file.

Events

None

PDBAppforgeDefinition

Methods
Property Get AppInfoBlock() As _PDBByteStream

Returns a byte stream representing the PDB AppInfo Block.
Property Get SortInfoBlock() As _PDBByteStream
Set or Returns a byte stream for a PDB Sort Info block.
Property Set SortInfoBlock() As _PDBByteStream

Set or Returns a byte stream for a PDB Sort Info block.
Function IsAppforgeData(ByVal oByteStream As _PDBByteStream) As Boolean

Check to see if the PDB file is an Appforge Table.
Function FieldCount() As Integer

Returns the number of fields defined in this Appforge Table.
Sub AddFieldName(ByVal sFieldName As String, ByVal iFieldType As eFieldTypes)

Add a new field to the Appforge Database.
Sub ClearFieldName

Clear all the fields names defined in this Appforge Table.
Property Get FieldName(ByVal Index As Integer) As String

Returns the field name for this position.
Property Let FieldName(ByVal Index As Integer, RHS As String)

Returns the field name for this position.
Property Get FieldType(ByVal Index As Integer) As eFieldTypes

Returns the Field Type for this Position
Property Let FieldType(ByVal Index As Integer, RHS As eFieldTypes)

Returns the Field Type for this Position
Property Get SortFieldCount() As Integer

Returns the number for Sort Fields.
Property Get SortFieldIndex(ByVal Index As Integer) As Integer

Returns the Field Postion that the table is sorted on.

Events

None

PDBAppforgeRecord

Methods
Property Get AppforgeDefinition() As _PDBAppforgeDefinition

Set/Returns the Appforge Header information used to generate the record information.
Property Set AppforgeDefinition() As _PDBAppforgeDefinition

Set/Returns the Appforge Header information used to generate the record information.
Property Get ByteStream() As _PDBByteStream

Set/Returns the byte stream that makes up this record.
Property Set ByteStream() As _PDBByteStream

Set/Returns the byte stream that makes up this record.
Function DataLength() As Long

Returns the size of the record in bytes.
Property Get ByteValue(ByVal Index As Integer) As Byte

Set/Returns a byte value
Property Let ByteValue(ByVal Index As Integer, RHS As Byte)

Set/Returns a byte value
Property Get BooleanValue(ByVal Index As Integer) As Boolean

Returns a boolean value.
Property Let BooleanValue(ByVal Index As Integer, RHS As Boolean)

Returns a boolean value.
Property Get IntegerValue(ByVal Index As Integer) As Integer

Set/Returns a Integer value
Property Let IntegerValue(ByVal Index As Integer, RHS As Integer)

Set/Returns a Integer value
Property Get LongValue(ByVal Index As Integer) As Long

Set/Returns a long value
Property Let LongValue(ByVal Index As Integer, RHS As Long)

Set/Returns a long value
Property Get DoubleValue(ByVal Index As Integer) As Double

Set/Returns a Double value
Property Let DoubleValue(ByVal Index As Integer, RHS As Double)

Set/Returns a Double value
Property Get CurrencyValue(ByVal Index As Integer) As Currency

Set/Returns a currency value
Property Let CurrencyValue(ByVal Index As Integer, RHS As Currency)

Set/Returns a currency value
Property Get SingleValue(ByVal Index As Integer) As Single

Set/Returns a single value
Property Let SingleValue(ByVal Index As Integer, RHS As Single)

Set/Returns a single value
Property Get DateValue(ByVal Index As Integer) As Date

Set/Returns a VB Date value
Property Let DateValue(ByVal Index As Integer, RHS As Date)

Set/Returns a VB Date value
Property Get StringValue(ByVal Index As Integer) As String

Set/Returns a string
Property Let StringValue(ByVal Index As Integer, RHS As String)

Set/Returns a string

Property Get/Let Value(ByVal Index As Integer) as Variant

Sets/Returns a value using a Variant.

Property Get/Let Signature(ByVal Index as Integer) as CSignature

Set/Return a Signature Class. This allows you to save Signature BMP files.

Events

None

PDBByteStream

Methods
Property Get GlobalByteSwap() As Boolean

Return/Set the Byte Swap Paramater. If this is to be on a PalmVFS, this means it will need to be read from a PalmOS program running on the device. Because PalmOS was originally developed on Motorola 68000 family, numeric values have the Most Significant
Property Let GlobalByteSwap(RHS As Boolean)

Return/Set the Byte Swap Paramater. If this is to be on a PalmVFS, this means it will need to be read from a PalmOS program running on the device. Because PalmOS was originally developed on Motorola 68000 family, numeric values have the Most Significant
Property Get UTF8Strings() As Boolean

Set/Return if you want to encode strings using UTF-8
Property Let UTF8Strings(RHS As Boolean)

Set/Return if you want to encode strings using UTF-8
Property Get DatabaseFor() As eDatabaseForType

Specificies the format to use to convert the Value into bytes.
Property Let DatabaseFor(RHS As eDatabaseForType)

Specificies the format to use to convert the Value into bytes.
Property Get ByteArray() As Variant

Set/Return an array of bytes that represents this data.
Property Let ByteArray(RHS As Variant)

Set/Return an array of bytes that represents this data.
Property Get Length() As Long

Returns the number of bytes in this byte stream.
Sub Resize(ByVal iLength As Long)

Resize the byte stream.
Sub Clear

Clear the Byte Stream.
Sub ByteToString(ByVal stString As String, ByVal iOffSet As Long)

Creates a String based on a Null Termination Formula
Sub StringToByte(ByVal stString As String, ByVal iOffSet As Long)

Converts a String value into a byte array using a Null Terminated formula.
Sub ByteToCString(ByVal stString As String, ByVal iOffSet As Long)

Returns a String from the byte stream based on the CString formula.
Sub CStringToByte(ByVal stString As String, ByVal iOffSet As Long)

Convert a string into a CString formated byte stream.
Sub ByteToFixString(ByVal stString As String, ByVal iOffSet As Long, ByVal iLength As Long)

Returns a string from a fixed number of bytes.
Sub FixStringToByte(ByVal stString As String, ByVal iOffSet As Long, ByVal iLength As Long)

Convert a string into a fixed length byte array.
Sub GetByte(ByVal stByte As Byte, ByVal iOffSet As Long)

Returns a single byte of data
Sub SetByte(ByVal stByte As Byte, ByVal iOffSet As Long)

Set a byte.
Sub ByteToInteger(ByVal stInteger As Integer, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Convert 2 bytes into an integer
Sub IntegerToByte(ByVal stInteger As Integer, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts an Integer into 2 bytes.
Sub ByteToInt24(ByVal stLong As Long, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Convert 3 bytes into a Int24 value.
Sub Int24ToByte(ByVal stLong As Long, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts an Integer into 3 bytes.
Sub ByteToLong(ByVal stLong As Long, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts 4 bytes into a Long
Sub LongToByte(ByVal stLong As Long, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts a Long value to 4 bytes.
Sub ByteToDouble(ByVal stDouble As Double, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Convert 8 bytes into a Double.
Sub DoubleToByte(ByVal stDouble As Double, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts a double to 8 bytes.
Sub ByteToCurrency(ByVal stCurrency As Currency, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts 8 bytes into a Currency value.
Sub CurrencyToByte(ByVal stCurrency As Currency, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Convert a Currency value into 8 bytes.
Sub ByteToSingle(ByVal stSingle As Single, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts 4 Bytes into a Single
Sub SingleToByte(ByVal stSingle As Single, ByVal iOffSet As Long, ByVal SwapByte As Boolean)

Converts a Single value to 4 bytes.

Events

None

PDBDatabase

Methods
Property Get PDBFilePath() As String

Set/Return the file path that the PDB file is actually located at.
Property Let PDBFilePath(RHS As String)

Set/Return the file path that the PDB file is actually located at.
Property Get PDBDatabaseName() As String

The name of the PDB Database. This value can not be more than 32 characters.
Property Let PDBDatabaseName(RHS As String)

The name of the PDB Database. This value can not be more than 32 characters.
Property Get CreatorId() As String

Returns/Sets the Creator Id for the PDB File.
Property Let CreatorId(RHS As String)

Returns/Sets the Creator Id for the PDB File.
Property Get DatabaseFor() As eDatabaseForType

Platform this database will be used on. This property is used to tell the class how to handle the Unquie Id. The UnquieID is handled differently depending on the where the database is going to be used.
Function OpenDatabase() As Boolean

Opens the Database.
Sub CloseDatabase

Closes and Saves changes to the database.
Sub RemoveDatabase

Deletes the database from the file device.
Function CreateDatabase() As Boolean

Creates a new database
Sub ReadAppInfoBlock(ByVal oByteStream As _PDBByteStream)

Read the PDB AppInfo Block.
Sub WriteAppInfoBlock(ByVal oByteStream As _PDBByteStream)

Writes a PDB AppInfo Block
Sub ReadSortInfoBlock(ByVal oByteStream As _PDBByteStream)

Returns the PDB Sort Info Block.
Sub WriteSortInfoBlock(ByVal oByteStream As _PDBByteStream)

Writes a PDB SortInfo Block
Property Get IterationIndex() As Long

Returns the record index that the database is current pointing to.
Property Let IterationIndex(RHS As Long)

Returns the record index that the database is current pointing to.
Function BOF() As Boolean

Returns True if at the Beginning of the file.
Function EOF() As Boolean

Returns True if reached the End of File.
Function ReadNext(ByVal Index As Long, ByVal UniqueId As Long, ByVal Category As Integer, ByVal Attributes As eRecordAttribute, ByVal oByteStream As _PDBByteStream) As Boolean

Read the next record from the file.
Function ReadNextByIndex(ByVal Index As Long, ByVal UniqueId As Long, ByVal Category As Integer, ByVal Attributes As eRecordAttribute, ByVal aData As _PDBByteStream) As Boolean

Read the record based on the Index value.
Function ReadNextById(ByVal Index As Long, ByVal UniqueId As Long, ByVal Category As Integer, ByVal Attributes As eRecordAttribute, ByVal aData As _PDBByteStream) As Boolean

Read a record by the PDB Unique ID.
Function ReadNextModified(ByVal Index As Long, ByVal UniqueId As Long, ByVal Category As Integer, ByVal Attributes As eRecordAttribute, ByVal aData As _PDBByteStream) As Boolean

Reads the next modified record in the database.
Sub Remove(ByVal UniqueId As Long)

Remove a record from the database. This is a perminate removal of the record.
Sub RemoveAll

Remove all the records from the database.
Sub RemoveWithDeleteFlag

Remove all records marked as Deleted.
Sub ResetModifyFlags

Reset all records marked as dirty to normal.
Property Get RecordCount() As Long

Returns the number of records in the database.
Sub Update(ByVal Index As Long, ByVal UniqueId As Long, ByVal Category As Integer, ByVal Attributes As eRecordAttribute, ByVal oByteStream As _PDBByteStream)

Update the record in the database with new information.
Function CreateDateTime() As Date

Returns the Date/Time the database was created.
Function ModifyDateTime() As Date

Returns the Date/Time the database as last modified

Property Get SyncIndex as CSyncIndex

This returns a SyncIndex Class. This class will help you keep track of what Palm Unique ID is associated with your Primary Key.

Events

None

PDBFileSystem

Methods
Function OpenDatabase(ByVal FileName As String, ByVal oDatabase As _PDBDatabase) As Boolean

Opens a database on the device.
Function CreateDatabase(ByVal FileName As Variant, ByVal oDatabase As _PDBDatabase) As Boolean

Creates a new Database on the Device.
Function MoveDatabase(ByVal FromFileName As String, ByVal ToFileName As String) As Boolean

Move a Database from one location to another on the device.
Function DeleteDatabase(ByVal FileName As String) As Boolean

Delete a database from the Device.
Function DatabaseCount() As Long

Returns the number of databases openned for this ApplicationId.
Function Database(ByVal iIndex As Long) As _PDBDatabase

Returns a Database object

Events

None

PDBUtils

Methods
Function UnsignedToLong(ByVal Value As Double) As Long

Convert an Unsigned Long into a Long value.
Function LongToUnsigned(ByVal Value As Long) As Double

Converts a Long to an Unsigned Long Value.
Function UnsignedToInteger(ByVal Value As Long) As Integer

Convert an Unsigned Integer into an Integer
Function IntegerToUnsigned(ByVal Value As Integer) As Long

Convert an Integer value into an Unsigned Integer.
Function PalmLongToDate(ByVal d As Long) As Date

Converts a Long Value into a VB Date.
Function DateToPalmLong(ByVal d As Date) As Long

Convert a VB Date to a Long Value
Function PalmIDtoLong(ByVal PalmId As String) As Long

Converts a 4 byte Palm ID into a Long.
Function PalmLongtoId(ByVal PalmId As Long) As String

Converts a Long value into a 4 byte String value.
Function ToUTF8(ByVal UTF16 As Long)() As Byte

Converts a UniCode byte into a byte array.
Function ToUTF16(ByVal BArray() As Byte) As Long

Converts a sets of bytes into a UniCode byte value.
Function UTF8Length(ByVal stString As String) As Long

Returns a the actual length of a UTF-8 Encoded string.

Events

None

AppforgeSignature

This class use used to create Signature BMP files.

Property Get/Let Signature as String

This property lets you set than Appforge Signature string to the class. If this class was created from an AppforgeRecord class, then this value will be supplied by the index supplied in the AppforgeRecord Class.

Property Get/Let Stamp as String

This information will be added to the Signature Image. Used to supply security embossing to the image so that the signature can not be used in correctly.

Sub Clear

Clears the content of the Signature Class

Sub CreateBMP(FileName, Optional StampColor, Optional StampFontSize, Optional StampFontName, Optional BackColor, Optional SignatureColor, Optional ImageWidth, Optional ImageHeight)

This method will create a BMP or JPG of the signature information and save to the file name supplied.

CSyncIndex

This class is used to keep track of sync information between your PC files and the PDB records. It will keep track of the Unique ID associated with your Primary Key. This process is not done automatically, you will have to manage it in your conduit code.

Property Get/Let UniqueId(ByVal PrimaryKey as String) as Long

Returns/Sets the UniqueID for the Primiary Key.

Sub Add(ByVal PrimaryKey As String, ByVal UniqueID As Long)

Add a new UniqueID to the Sync Index database.

Sub Remove(PrimaryKey as String)

Removes the reference to the Primary key in the Sync Index database.

Sub Clear

Clears all records from the Sync Index database.

Sub CloseIndex

Writes changes to disk.

Example Application:

Option Explicit

Implements ISyncNotify

' --

' SyncNotify Methods

' --

Private Sub ISyncNotify_BeginSynchronize(oSync As ntsSync.oSyncInfo)

 Dim oIniFile As New cFileIO

 Dim sTemp As String

 ' Ini Informatino

 Dim sFilePath As String

 Dim sErgosLocWin As String

 Dim sErgosLocDateTime As String

 Dim sErgosPartWin As String

 Dim sErgosPartDateTime As String

 Dim sErgosPartDetailWin As String

 Dim sErgosPartDetailDateTime As String

 Dim sErgosSummaryWin As String

 Dim sErgosPartOnHandWin As String

 Dim sErgosPartOrderWin As String

 Dim dDateTime As Variant

 Dim bUpdate As Boolean

 Dim bCreatePartSummary As Boolean

 Dim bForceUpdate As Boolean

 ' Begin processing the Sync information

 oSync.UpdateLog App.ProductName

 ' Check the Device Date time to see if it is less than the current time.

 If oSync.Device.DeviceDateTime < Now Then

 sTemp = "The Date/Time on the Device is less that the Date/Time on the computer."

 sTemp = sTemp & vbCrLf & "This will cause your files to load to the device everytime you sync the handheld." & vbCrLf & "Please make sure the Date/Time is current on both PC and Handheld."

 sTemp = sTemp & vbCrLf & "Device Date/Time: " & oSync.Device.DeviceDateTime

 sTemp = sTemp & vbCrLf & "PC Date/Time: " & Now

 sTemp = sTemp & vbCrLf & "Syncing will terminate"

 MsgBox sTemp, vbCritical

 Exit Sub

 End If

 ' REads the IniFile information

 oIniFile.FullFileName = App.Path & "\ErgosInvCount.ini"

 oIniFile.ReadINI "General", "FilePath", sFilePath, App.Path

 If Err.Number <> 0 Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - Error: " & Err.Number & " " & Err.Source & " " & Err.Description

 Exit Sub

 End If

 ' Get File names to save information to.

 oIniFile.ReadINI "OnHand", "FileName", sErgosPartOnHandWin, "PartOnHand-%username%.txt"

 sErgosPartOnHandWin = Replace(Replace(Replace(LCase(sErgosPartOnHandWin), "%username%", oSync.Device.DeviceName), "%filepath%", sFilePath), "%apppath%", App.Path)

 oIniFile.ReadINI "Order", "FileName", sErgosPartOrderWin, "PartOrder-%username%.txt"

 sErgosPartOrderWin = Replace(Replace(Replace(LCase(sErgosPartOrderWin), "%username%", oSync.Device.DeviceName), "%filepath%", sFilePath), "%apppath%", App.Path)

 ' Open the Part Detail File on the Palm, and save all the information to a Text File

' DownLoadFile sErgosPartOnHandWin, "ErgosPartDetail", oSync

 If oSync.CancelSync Then Exit Sub

 ' Download the Part Order Information

' DownLoadFile sErgosPartOrderWin, "ErgosPartOrder", oSync

 If oSync.CancelSync Then Exit Sub

 ' Delete the Part Order Information

 oSync.FileSystem.DeleteDatabase "ErgosPartOrder"

 ' Update Location

 oIniFile.ReadINI "LocationFile", "FileName", sErgosLocWin, ""

 sErgosLocWin = Replace(Replace(Replace(LCase(sErgosLocWin), "%username%", oSync.Device.DeviceName), "%filepath%", sFilePath), "%apppath%", App.Path)

 oIniFile.ReadINI "LocationFile", "ForceUpdate", sTemp, "0"

 oIniFile.WriteIni "LocationFile", "ForceUpdate", "0"

 If sTemp = "1" Then bForceUpdate = True Else bForceUpdate = False

 UploadData sErgosLocWin, "ErgosLoc", oSync, bForceUpdate

 If oSync.CancelSync Then Exit Sub

 ' Update Part File

 oIniFile.ReadINI "PartFile", "FileName", sErgosPartWin, ""

 sErgosPartWin = Replace(Replace(Replace(LCase(sErgosPartWin), "%username%", oSync.Device.DeviceName), "%filepath%", sFilePath), "%apppath%", App.Path)

 oIniFile.ReadINI "PartFile", "ForceUpdate", sTemp, "0"

 oIniFile.WriteIni "PartFile", "ForceUpdate", "0"

 If sTemp = "1" Then bForceUpdate = True Else bForceUpdate = False

 If UploadData(sErgosPartWin, "ErgosPart", oSync, bForceUpdate) Then

 ' Part file updated

 bCreatePartSummary = True

 End If

 If oSync.CancelSync Then Exit Sub

 ' Update Part Detail information

 oIniFile.ReadINI "PartDetailFile", "FileName", sErgosPartDetailWin, ""

 sErgosPartDetailWin = Replace(Replace(Replace(LCase(sErgosPartDetailWin), "%username%", oSync.Device.DeviceName), "%filepath%", sFilePath), "%apppath%", App.Path)

 oIniFile.ReadINI "PartDetailFile", "ForceUpdate", sTemp, "0"

 oIniFile.WriteIni "PartDetailFile", "ForceUpdate", "0"

 If sTemp = "1" Then bForceUpdate = True Else bForceUpdate = False

 If UploadData(sErgosPartDetailWin, "ErgosPartDetail", oSync, bForceUpdate) Then

 ' Creates a new Part Summary file.

 bCreatePartSummary = True

 End If

 If oSync.CancelSync Then Exit Sub

 ' Creates a Part Summary file based on the information supplied in Part and

 ' Part Detail files

 If bCreatePartSummary Then

 CreatePartSummaryFile sErgosPartWin, sErgosPartDetailWin, oSync

 End If

 Exit Sub

ErrorHandler:

 ' Log Error

 oSync.UpdateLog App.ProductName & " - Error: " & Err.Number & " " & Err.Source & " " & Err.Description

End Sub

Private Sub ISyncNotify_ConfigureConduit()

 ' Configure

 Shell "notepad " & App.Path & "\ErgosInvCount.ini", vbNormalFocus

End Sub

Private Function ISyncNotify_GetConduitInfo(ByVal InfoType As ntsSync.eConduitType) As String

 ' Get information

 Select Case InfoType

 Case ctIcon

 ISyncNotify_GetConduitInfo = "InvCount.ico"

 Case ctVersion

 ISyncNotify_GetConduitInfo = App.Major & "." & App.Minor & " Build " & App.Revision

 Case ctCreatorID

 ISyncNotify_GetConduitInfo = "ERGI"

 Case ctAuthor

 ISyncNotify_GetConduitInfo = App.CompanyName

 Case ctAppPath

 ISyncNotify_GetConduitInfo = App.Path

 Case ctApplicationName

 ISyncNotify_GetConduitInfo = App.Title

 Case Else

 ISyncNotify_GetConduitInfo = ""

 End Select

End Function

Private Sub ISyncNotify_SynchronizeClose()

 ' Do Nothing

End Sub

' --

' Private Methods and properties

' --

Private Function UploadData(ByVal sFileName As String, ByVal sPalmFileName As String, ByRef oSync As oSyncInfo, ByVal bForceUpdate As Boolean) As Boolean

 Dim dDateTime As Variant

 Dim sErgosPartDateTime As String

 Dim iCnt As Long

 Dim bUpdate As Boolean

 Dim sTemp As String

 Dim sRecNo As String

 Dim sDynArray As String

 Dim iPos As Long

 Dim D As Long

 Dim oFile As New cFileIO

 Dim nIndex As Long

 Dim vUniqueId As Long

 Dim nCategory As Long

 Dim eAttributes As eRecordAttribute

 Dim oDatabase As PDBDatabase

 Dim oAppForgeHeader As New PDBAppforgeDefinition

 Dim oAppforgeRecord As PDBAppforgeRecord

 Dim oByteStream As PDBByteStream

 On Error Resume Next

 ' Opens the Text File

 iCnt = 0

 dDateTime = FileDateTime(sFileName)

 ' Updates the status information

 oSync.UpdateStatusMain "Checking for changes to " & sPalmFileName & " information..."

 ' Get the Date this database was last created.

 If oSync.FileSystem.OpenDatabase(sPalmFileName, oDatabase) Then

 ' file exists.

 sErgosPartDateTime = CStr(oDatabase.CreateDateTime)

 Else

 ' File does not exist.

 sErgosPartDateTime = ""

 End If

 ' Check to see if we need to change the data

 If bForceUpdate Then

 ' Force the Update

 bUpdate = True

 ' Force Update

 oSync.UpdateLog App.ProductName & " - " & sFileName & ": Force Overwrite of the data file."

 ElseIf Len(sErgosPartDateTime) = 0 Then

 ' Nothing

 bUpdate = True

 ' Force Update

 oSync.UpdateLog App.ProductName & " - " & sPalmFileName & ": Palm File does not exists. Need to Create."

 oSync.UpdateLog "Win File Modify: " & CDate(dDateTime)

 ElseIf CDate(sErgosPartDateTime) >= CDate(dDateTime) Then

 ' No changes

 bUpdate = False

 ' Reason Not to upate

 oSync.UpdateLog App.ProductName & " - " & sFileName & " NOT changed"

 oSync.UpdateLog "Win File Modify: " & CDate(dDateTime) & " = Palm File Create:" & CDate(sErgosPartDateTime)

 Else

 ' Need to update Palm

 bUpdate = True

 ' Reason for Update

 oSync.UpdateLog App.ProductName & " - " & sFileName & " Changed."

 oSync.UpdateLog "Win File Modify: " & CDate(dDateTime) & " > Palm File Create:" & CDate(sErgosPartDateTime)

 End If

 ' Check to see if we need to update the plam with this informaiton

 If Not bUpdate Then

 ' Return not updated

 UploadData = False

 Exit Function

 End If

 ' Updates the status information

 oSync.UpdateStatusMain "Uploading " & sPalmFileName & " information..."

 oSync.UpdateStatusDetail ""

 ' Open file to process information

 oFile.FullFileName = sFileName

 If Not oFile.OpenFile("", "R") Then

 ' Can not find the file

 oSync.UpdateLog App.ProductName & " - Unable to Open " & sFileName

 ' Return not updated

 UploadData = False

 Exit Function

 Else

 ' Opens the remote database file

 oSync.UpdateStatusMaxBar oFile.FileSize ' FileLen(sFileName)

 ' Recreate the Database so there are no records in it

 If Len(sErgosPartDateTime) > 0 Then

 ' Database exists. REmove it

 oDatabase.RemoveDatabase

 End If

 ' Recreate database

 If oSync.FileSystem.CreateDatabase(sPalmFileName, oDatabase) Then

 ' Succesfully created the database

 Else

 ' failed to create the database

 oSync.UpdateLog App.ProductName & " - Unable to Create " & sPalmFileName

 ' Return not updated

 UploadData = False

 Exit Function

 End If

 ' Creates the Appforge header information

 oAppForgeHeader.AddFieldName "RecNo", eStringField

 oAppForgeHeader.AddFieldName "RecordType", eByteField

 oAppForgeHeader.AddFieldName "UpdateDate", eDateField

 oAppForgeHeader.AddFieldName "DynArray", eStringField

 oDatabase.WriteAppInfoBlock oAppForgeHeader.AppInfoBlock

 ' start Creating the information

 Do Until oFile.IsEOF

 ' Reads the information from the text file

 oFile.InputLine sTemp

 iPos = InStr(sTemp, vbTab)

 If iPos = 0 Then

 sRecNo = ""

 sDynArray = ""

 Else

 sRecNo = Mid(sTemp, 1, iPos - 1)

 sDynArray = Mid(sTemp, iPos + 1)

 End If

 ' Creates the PDB Record

 Set oAppforgeRecord = New PDBAppforgeRecord

 Set oAppforgeRecord.AppforgeDefinition = oAppForgeHeader

 oAppforgeRecord.StringValue(1) = sRecNo

 oAppforgeRecord.ByteValue(2) = 0

 oAppforgeRecord.DateValue(3) = Now

 oAppforgeRecord.StringValue(4) = Replace(sDynArray, vbTab, Chr(254))

 oDatabase.Update -1, 0, 0, 0, oAppforgeRecord.ByteStream

 ' Update status

 iCnt = iCnt + 1

 oSync.UpdateStatusDetail iCnt & " - " & sRecNo

 oSync.UpdateStatusBarValue oFile.CurrentPos

 If oSync.CancelSync Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - User Terminated"

 Exit Function

 End If

 ' Doevents so informatio is display in the status window

 DoEvents

 Loop

 ' Close the Database to commit the changes

 oDatabase.CloseDatabase

 End If

 oFile.CloseFile

 ' Flag as updated

 UploadData = True

End Function

Private Sub CreatePartSummaryFile(ByVal sPartFileName As String, ByVal sPartDetailFileName As String, ByRef oSync As oSyncInfo)

 Dim sTemp As String

 Dim oPartList As New Collection

 Dim oPartDetailList As New Collection

 Dim i As Integer

 Dim D As Integer

 Dim iNum As Integer

 Dim iOffSet As Long

 Dim sRecNo As String

 Dim sDynArray As String

 Dim iPos As Integer

 Dim bFound As Boolean

 Dim sLoc As String

 Dim sPartNo As String

 Dim aTemp() As String

 Dim aPartDetail() As String

 Dim aPart() As String

 Dim aPartSummaryItem() As String

 Dim oPartFile As New cFileIO

 Dim oPartDetailFile As New cFileIO

 Dim sPalmFileName As String

 Dim oDatabase As PDBDatabase

 Dim oAppForgeHeader As New PDBAppforgeDefinition

 Dim oAppforgeRecord As PDBAppforgeRecord

 Dim oByteStream As PDBByteStream

 Dim oPartNoList() As String

 Dim oBinList() As String

 Dim oDescList() As String

 Dim oOnHandList() As String

 Dim nIndex As Long

 Dim vUniqueId As Long

 Dim nCategory As Long

 Dim eAttributes As eRecordAttribute

 On Error Resume Next

 ' Open the part file and get the information

 oPartFile.FullFileName = sPartFileName

 If Not oPartFile.OpenFile("", "R") Then

 ' failed

 Exit Sub

 End If

 ' Read the part detail information

 oPartDetailFile.FullFileName = sPartDetailFileName

 If Not oPartDetailFile.OpenFile("", "R") Then

 ' failed

 Exit Sub

 End If

 ' Updates the status information

 oSync.UpdateStatusMain "Generating Part Summary information..."

 oSync.UpdateStatusDetail ""

 ' Update the progress bar

 oSync.UpdateStatusMaxBar (oPartDetailFile.FileSize + oPartFile.FileSize)

 ' Get all the Parts so we can create the summary

 oPartFile.Reset

 Do Until oPartFile.IsEOF

 ' Get the infromation to split

 oPartFile.InputLine sTemp

 ' Gets the Data from the Record

 iPos = InStr(sTemp, vbTab)

 If iPos = 0 Then

 sRecNo = ""

 sDynArray = ""

 Else

 sRecNo = Mid(sTemp, 1, iPos - 1)

 sDynArray = Mid(sTemp, iPos + 1)

 End If

 ' Adds to part collection.

 If Len(sRecNo) > 0 Then oPartList.Add sDynArray, sRecNo

 ' Update Status

 oSync.UpdateStatusDetail "Part# " & sRecNo

 If oSync.CancelSync Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - User Terminated"

 Exit Sub

 End If

 ' Update Progress bar

 oSync.UpdateStatusBarValue oPartFile.CurrentPos

 Loop

 oPartFile.CloseFile

 ' Gather all the part detail information

 oPartDetailFile.Reset

 Do Until oPartDetailFile.IsEOF

 ' Get the infromation to split

 oPartDetailFile.InputLine sTemp

 bFound = True

 ' Gets the Data from the Record

 iPos = InStr(sTemp, vbTab)

 If iPos = 0 Then

 sRecNo = ""

 sDynArray = ""

 Else

 sRecNo = Mid(sTemp, 1, iPos - 1)

 sDynArray = Mid(sTemp, iPos + 1)

 End If

 ' Split the data

 aPartDetail = Split(sDynArray, vbTab)

 ' Gets the PartNo

 iPos = InStr(sRecNo, "*")

 If iPos = 0 Then

 sLoc = sRecNo

 sPartNo = ""

 Else

 sLoc = Mid(sRecNo, 1, iPos - 1)

 sPartNo = Mid(sRecNo, iPos + 1)

 End If

 ' Get Part information

 Err.Clear

 sTemp = oPartList(sPartNo)

 If Err.Number <> 0 Then

 sTemp = ""

 bFound = False

 End If

 aPart = Split(sTemp, vbTab)

 ' Gets the Part Summary list.

 Err.Clear

 sTemp = oPartDetailList("j" & sLoc)

 If Err.Number <> 0 Then sTemp = ""

 If Len(sTemp) > 0 Then

 aPartSummaryItem = Split(sTemp, Chr(254))

 Else

 ReDim aPartSummaryItem(4) As String

 End If

 ' Update the pary summary record.

 If bFound Then

 If Len(aPartSummaryItem(1)) > 0 Then

 aPartSummaryItem(1) = aPartSummaryItem(1) & Chr(253)

 aPartSummaryItem(2) = aPartSummaryItem(2) & Chr(253)

 aPartSummaryItem(3) = aPartSummaryItem(3) & Chr(253)

 aPartSummaryItem(4) = aPartSummaryItem(4) & Chr(253)

 End If

 aPartSummaryItem(1) = aPartSummaryItem(1) & sPartNo

 aPartSummaryItem(2) = aPartSummaryItem(2) & aPartDetail(1)

 aPartSummaryItem(3) = aPartSummaryItem(3) & aPart(0)

 aPartSummaryItem(4) = aPartSummaryItem(4) & aPartDetail(2)

 ' Updates the Part Summary information

 sTemp = sLoc & Chr(254) & aPartSummaryItem(1) & Chr(254) & aPartSummaryItem(2) & Chr(254) & aPartSummaryItem(3) & Chr(254) & aPartSummaryItem(4)

 oPartDetailList.Remove "j" & sLoc

 oPartDetailList.Add sTemp, "j" & sLoc

 End If

 ' Update Status

 oSync.UpdateStatusDetail "Part# " & sRecNo

 If oSync.CancelSync Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - User Terminated"

 Exit Sub

 End If

 ' Update Progress bar

 oSync.UpdateStatusBarValue (oPartFile.FileSize + oPartDetailFile.CurrentPos)

 Loop

 oPartDetailFile.CloseFile

 ' Recreate the Database so there are no records in it

 sPalmFileName = "ErgosPartDetailSummary"

 If oSync.FileSystem.DeleteDatabase(sPalmFileName) Then

 ' Successful

 Else

 ' Failed

 End If

 If oSync.FileSystem.OpenDatabase(sPalmFileName, oDatabase) Then

 ' Successful

 Else

 ' failed

 End If

 ' Updates the status information

 oSync.UpdateStatusMain "Transfering " & sPalmFileName & " information..."

 oSync.UpdateStatusDetail ""

 ' Creates the Appforge header information

 oAppForgeHeader.AddFieldName "RecNo", eStringField

 oAppForgeHeader.AddFieldName "SortField", eStringField

 oAppForgeHeader.AddFieldName "PartNo", eStringField

 oAppForgeHeader.AddFieldName "BinLoc", eStringField

 oAppForgeHeader.AddFieldName "Desc", eStringField

 oAppForgeHeader.AddFieldName "OnHand", eStringField

 oDatabase.WriteAppInfoBlock oAppForgeHeader.AppInfoBlock

 ' Opens the remote database file

 oSync.UpdateStatusMaxBar CLng(oPartDetailList.Count)

 ' start Creating the information

 For i = 1 To oPartDetailList.Count

 sTemp = oPartDetailList.Item(i)

'Debug.Print "sTemp " & sTemp

 ' Gets the Data from the Record

 iPos = InStr(sTemp, Chr(254))

 If iPos = 0 Then

 sRecNo = ""

 sDynArray = ""

 Else

 sRecNo = Mid(sTemp, 1, iPos - 1)

 sDynArray = Mid(sTemp, iPos + 1)

 End If

 ' Split the information

 aTemp = Split(sDynArray, Chr(254))

 iNum = UBound(aTemp) + 1

' oPartNoList.Text = aTemp(0)

' oBinList.Text = aTemp(1)

' oDescList.Text = aTemp(2)

' oOnHandList.Text = aTemp(3)

 oPartNoList = Split(aTemp(0), Chr(253))

 oBinList = Split(aTemp(1), Chr(253))

 oDescList = Split(aTemp(2), Chr(253))

 oOnHandList = Split(aTemp(3), Chr(253))

 ' Creates the First record

 Set oAppforgeRecord = New PDBAppforgeRecord

 Set oAppforgeRecord.AppforgeDefinition = oAppForgeHeader

 oAppforgeRecord.StringValue(1) = sRecNo

 oAppforgeRecord.StringValue(2) = sRecNo & "*" & 0

 oAppforgeRecord.IntegerValue(3) = UBound(oPartNoList) + 1 ' oPartNoList.Count(1, 0, 0)

 oDatabase.Update -1, 0, 0, 0, oAppforgeRecord.ByteStream

 ' Create a record for each line in the list olcation

 iNum = UBound(oPartNoList) + 1 ' oPartNoList.Count(1, 0, 0)

 For D = 1 To iNum

 Set oAppforgeRecord = New PDBAppforgeRecord

 Set oAppforgeRecord.AppforgeDefinition = oAppForgeHeader

 oAppforgeRecord.StringValue(1) = sRecNo & "*" & oPartNoList(D - 1)

 oAppforgeRecord.StringValue(2) = sRecNo & "*" & D

 oAppforgeRecord.StringValue(3) = oPartNoList(D - 1) ' oPartNoList.StringValue(1, D, 0)

 oAppforgeRecord.StringValue(4) = oBinList(D - 1) 'oBinList.StringValue(1, D, 0)

 oAppforgeRecord.StringValue(5) = oDescList(D - 1) ' oDescList.StringValue(1, D, 0)

 oAppforgeRecord.StringValue(6) = oOnHandList(D - 1) ' oOnHandList.StringValue(1, D, 0)

 oDatabase.Update -1, 0, 0, 0, oAppforgeRecord.ByteStream

 ' Update status

 oSync.UpdateStatusDetail i & " - " & D & " " & sRecNo

' oSync.UpdateStatusIncrementBar 1

 If oSync.CancelSync Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - User Terminated"

 Exit Sub

 End If

 DoEvents

 Next D

 ' Update status

 oSync.UpdateStatusDetail i & " - " & sRecNo

 oSync.UpdateStatusIncrementBar 1

 If oSync.CancelSync Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - User Terminated"

 Exit Sub

 End If

 ' Doevents so informatio is display in the status window

 DoEvents

 Next i

 ' Close the Database go commit changes

 oDatabase.CloseDatabase

End Sub

Private Sub DownLoadFile(ByVal sFileName As String, ByVal sPalmFileName As String, ByRef oSync As oSyncInfo)

 Dim dDateTime As Variant

 Dim sErgosPartDateTime As String

 Dim iCnt As Long

 Dim bUpdate As Boolean

 Dim FileNum As Integer

 Dim sTemp As String

 Dim sRecNo As String

 Dim sDynArray As String

 Dim iPos As Long

 Dim nIndex As Long

 Dim vUniqueId As Long

 Dim nCategory As Integer

 Dim eAttributes As eRecordAttribute

 Dim oFile As New cFileIO

 Dim oDatabase As PDBDatabase

 Dim oAppForgeHeader As New PDBAppforgeDefinition

 Dim oAppforgeRecord As PDBAppforgeRecord

 Dim oByteStream As PDBByteStream

 On Error Resume Next

 ' Open the Part Detail File on the Palm, and save all the information to a Text File

 oFile.FullFileName = sFileName

 If oFile.OpenFile("", "W") Then

 ' Openned

 Else

 ' Failed

 oSync.UpdateLog App.ProductName & " - Unable to open " & sFileName & " with Write Permissions."

 Exit Sub

 End If

 ' Updates the status information

 oSync.UpdateStatusMain "Checking for changes to " & sPalmFileName & " information..."

 ' Opens the Palm Database on the part detail

 If oSync.FileSystem.OpenDatabase(sPalmFileName, oDatabase) Then

 ' file exists. Gets the Appforge Header information

 Set oByteStream = New PDBByteStream

 oDatabase.ReadAppInfoBlock oByteStream

 If Not oAppForgeHeader.IsAppforgeData(oByteStream) Then

 ' Appforge data

 oSync.UpdateLog App.ProductName & " - " & sPalmFileName & " not an Appforge Database. Unable to decode information."

 Exit Sub

 End If

 ' Updates the status information

 oSync.UpdateStatusMain "Downloading changes to " & sPalmFileName & "..."

 oSync.UpdateStatusDetail ""

 ' Gather all the information for this File

 oSync.UpdateStatusMaxBar oDatabase.RecordCount

 oDatabase.IterationIndex = 0

 iCnt = 0

 ' Gets the First Modified record to update

 Do While oDatabase.ReadNextModified(nIndex, vUniqueId, nCategory, eAttributes, oByteStream)

 ' extraxt the information from the record

 Set oAppforgeRecord = New PDBAppforgeRecord

 Set oAppforgeRecord.AppforgeDefinition = oAppForgeHeader

 Set oAppforgeRecord.ByteStream = oByteStream

 ' Get information to process

 sRecNo = oAppforgeRecord.StringValue(1)

 sDynArray = oAppforgeRecord.StringValue(4)

 ' Gets the Value from the dynamic array

 sTemp = sDynArray

 ' Writes data to file

 sTemp = sRecNo & vbTab & VBA.Replace(sTemp, Chr(254), vbTab)

 oFile.PrintLine sTemp

 ' Update Status

 iCnt = iCnt + 1

 oSync.UpdateStatusDetail iCnt & " - Part# " & sRecNo

 oSync.UpdateStatusIncrementBar 1

 If oSync.CancelSync Then

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - User Terminated"

 Exit Sub

 End If

 Loop

 ' Save the changes to the file

 oFile.CloseFile

 ' Reset all modified flags

 oDatabase.ResetModifyFlags

 ' Close the Database to commit the changes

 oDatabase.CloseDatabase

 ' Open the Text Files to update the PDB Records on the Palm

 oSync.UpdateLog App.ProductName & " - Updated " & oFile.FileName

 Else

 ' Can not find this file.

 oFile.DeleteFile

 End If

End Sub

_1169667923

_1169669867

_1169667853

