Focus on Visual Basic for Applications and Excel

Objective

· This workshop is designed to focus more on Visual Basic for Applications and Excel

· Covers the common Object, Methods, and Properties for Excel

· Sample code is included.

What can be done with VBA?

· Pull data from database automatically

· Retrieve information automatically upon opening Excel

· Create custom data entry screen

Objects (Commonly used Objects)

Application – Represents the entire Microsoft Excel application. The Application object contains:

· Application-wide settings and options (for example, many of the options in the Options dialog box found in Tools menu).

· Methods that return top-level objects, such as ActiveCell, ActiveSheet, and so on.

Workbooks(workbook name or number) - A collection of all the Workbook objects that are currently open in the Microsoft Excel application.

Worksheets(worksheet name or number) - A collection of all the Worksheet objects in the specified or active workbook. Each Worksheet object represents a worksheet.

ChartObjects(chart name or number) - object represents an embedded chart in a worksheet.

Charts(chart name or number) - A collection of all the chart sheets in the specified or active workbook.

Range(range name or number) - Represents a cell, a row, a column, a selection of cells containing one or more contiguous blocks of cells, or a 3-D range.

Cells(row, column) - Returns a Range object that represents the cells specified, or all the cells if no row/ column is used, for the worksheet

Common Shortcut Objects

ActiveWorkbook – returns a Workbook object for the workbook that is currently active

ActiveWorksheet – returns a Worksheet object for the worksheet that is currently

 active.

ActiveChart – returns a Chart object for the chart that is currently active

ActiveCell – returns a Range object for the cell that is currently active

Common Properties and/or Methods

Call Application.Workbooks(“Book1”).Protect(Password)

· Protects a workbook so that it cannot be modified

Call Application.Workbooks(“Book1”).Worksheet(“Sheet1”).Protect(Password)

· Protects a worksheet so that it cannot be modified

Call Application.Workbooks(“Book1”).Close(SaveChanges as True/False, _

 FileName)

· Closes the Workbook with the option to Save

Call Application.Workbooks(“Book1”).Worksheet(“Sheet1”).Close

· Closes the Worksheet

Call Application.Workbooks(“Book1”).Save

· Saves Workbook

Call Application.Workbooks.Open(Filename)

· Opens Workbook

Call Application.Workbooks.add(Before Sheet?, After Sheet?)

· Creates a new worksheet. The new sheet becomes the active sheet, which allows it be accessed using ActiveWorksheet

Call Application.Workbooks(“Book1”).Worksheet(“Sheet1”).Activate

· This sets ActiveWorksheet to the worksheet named “Sheet1”

ActiveWorksheet.Name = “Worksheet Name”

· Renames the worksheet that is currently active. This name shows up in the worksheets name tag, and is used to access the worksheet when using WorkSheets(Sheet Name).

Worksheets("Sheet1").Range("A1").Value = 3.14159

· Value is used to assign a value or returns a value of the Cell. This example sets the value of cell A1 on Sheet1 to 3.14159.

Worksheets(“Sheet1”).Range(“A1”).IsEmpty = True/False

· IsEmpty returns “True” if the cell is empty and “False” if the cell has a value

Creating Custom Functions:

Excel allows developers to create custom functions to add to their worksheets cells. These functions can do anything from running complex calculations to opening and reading data from a database.

Useful Code

Function used to insert a new row in a ‘Named Range”.

Private Function InsertRangeRow(RangeName As String, _

 RangeObject As Range) As Integer

 Dim TotalRows As Integer, LastRow As Integer

 ' this routine will insert a new row into a named range and resize

 ' the range to include the new row. It will then return the new

 ' row number for use in the calling program

 With RangeObject

 TotalRows = .Rows.Count ' total rows in range

 LastRow = .Rows(TotalRows).Row ' last row number

 .Rows(LastRow).Insert ' insert before last row

 ' resizes the range

 Names.Add Name:=RangeName, RefersTo:=.Resize(.Rows.Count + 1)

 End With

 ' returns the row# that was inserted

 InsertRangeRow = LastRow

End Function

This subroutine is useful for create a Line chart for a specific ‘Range’

Private Sub CreateLineChart(RowPos As Integer, RangeName as String, _

 SheetName as String, ChartName as String)

 ' this routine is used to create a chart bassed on the sales range

 ‘ just input

 ' adds new chart and name it

 Charts.Add

 ActiveChart.Name = ChartName

 ' defines the type of chart and the range it is to use

 ActiveChart.ChartType = xlLineMarkers

 ActiveChart.SetSourceData _

Source:=Worksheets(SheetName).Range(RangeName), _

PlotBy:=xlColumns

 ' Specifies the location of the chart on the worksheet

 ActiveChart.Location Where:=xlLocationAsObject, Name:=SheetName

 ' assigns the top to the cell and row pos sent from calling program

 Worksheets(SheetName).Activate

 ActiveWorksheet.ChartObjects(1).Top = _

ActiveWorksheet.Rows(RowPos).Top + 10

 ActiveWorksheet.ChartObjects(1).Left = 33

End Sub

Working with Excel:

Inserting Multi-Value Information in Excel – Using Winlink and ViaObjects

Sub macro1()

 Dim wlBase As New WinLink.BaseObject

 Dim wlLink As WinLink.Link

 Dim wlList As WinLink.List

 Dim wlItem As WinLink.DelimitedString

 Dim wlOrderFile As WinLink.RemoteFile

 ' Adds information into a Excel

 ' creates the link to the WinLink Host. It will open the default

 ‘ host. Change the name of the default host if you wish to assign

 ‘ to a different host.

 Set wlLink = wlBase.Links.OpenLink("Default")

 ' opens orders file

 Set wlOrderFile = wlLink.RemoteFiles.OpenFile("ORDERS")

 ' Selects information

 TclCmd = "SELECT ORDERS"

 wlLink.ExecuteCommand TclCmd, CommandGeneratesList:=True

 Set wlList = wlLink.CommandList

 ' starts the readnext

 While wlList.ReadNext

 ' creates the item

 Set wlItem = wlOrderFile.Read(wlList.ItemId)

 TotalSales = CLng(wlItem.Extract(1).Text)

 Dept = wlItem.Extract(2).Text

 ' adds to the Range called Sales

 LastRow = InsertRangeRow("Sales",Worksheets("sheet1")._

Range("Sales"))

 ' reads the department name and adds to row

 Worksheets("sheet1").Cells(LastRow, 1) = Dept

 ' adds the each month read

 Worksheets("sheet1").Cells(LastRow, 2) = CCur(TotalSales) / 100

 Wend

 ' closes and destroys link

 wlLink.CloseAllFiles ' verify that all files are closed

 wlLink.CloseLink ' closes link

 ' destroys base object.

 Set wlBase = Nothing

 ' Creates a chart

 Call CreateLineChart(10, "Sales", "Sheet1", "Chart1")

End Sub

About Speaker

Nathan Rector is the owner of Natec Systems. Natec Systems has been providing solutions to the Multi-Value market for 8 years. Nathan is a feature author for International Spectrum’s “Tech Tips”.

Natec Systems has worked with integrating Multi-Value data into Windows and the Internet. They work with Visual Basic, ODBC, as well as traditional MultiValue BASIC.

On-site training classes are available for:

Visual Basic

Visual Basic for Applications

Winlink 32

D3/Objects

WebWizard

For more information on Natec Systems or custom applications, contact:

Natec Systems

1685 Sutter Road

McKinleyville, Ca 95519

Phone: 707-443-6716
Fax: 707-839-4315

Email: nater@northcoast.com
http://www.northcoast.com/~nater
VBA106 – Workshop
Page 1 of 5
Natec Systems

